
34 The Delphi Magazine Issue 44

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Knocked Down, Made Small
In which we look at some elementary
compression techniques

Just recently, the company I
work for, TurboPower Software,

decided that it should update its
compression library, Abbrevia, for
a version 2. Various enhancements
were considered for inclusion in a
planning meeting one day, one of
them being optimizing the zip/
unzip process, the actual engine of
the library (there were other
optimizations discussed but they
needn’t concern us here). The orig-
inal developer of Abbrevia had left
the company, so it really was time
someone new took over the basic
engine code. People looked
around, weighing up each person
in turn, looking for a heavy duty
algorithms and data structures
developer to review the code and
suggest improvements. Finally,
after five nanoseconds, all eyes
were on me. Done deal, fait
accompli.

I knew nothing concrete about
the zip compression algorithm
apart from some abstract under-
standing of how it worked. I soon
had a lot more knowledge. Hence
this initial article, where I’d like to
share some of my findings with
you.

What we’ll do this month is dis-
cuss a couple of simple compres-
sion algorithms, including Huffman
encoding. In a future article we’ll
look at sliding window and dictio-
nary based algorithms. In all of
them we’ll be using some data
structures we’ve been developing
here at Algorithms Alfresco.

Professor Night
So, compression then. For a start, it
has always fascinated me that data
is actually compressible. I mean
data is data, right? If we’ve got a
bunch of data, how can we make it
occupy less space? Well, as a first
step, we need to recognize that we
can separate the data into two
parts: the actual ‘information’
conveyed by the data, and the

method used to encode that data in
some physical form. We can’t do
much about the information: by
our definition it has no physical
attributes, it’s just some nebulous
‘essence’: let’s get metaphysical
here! But the method used to
encode that information is some-
thing we can attack.

Of course, it goes without saying
that we should be able to decom-
press the compressed data. It
would be a pretty poor compres-
sion method which didn’t have a
decompression algorithm! For the
moment we shall just be consider-
ing lossless compression; in other
words, we get exactly the same
data, once we’ve compressed it
and decompressed it, as we had in
the first place. Nothing gets lost
through the process. This com-
pares with lossy compression,
such as the JPG image format,
where the loss of some information
isn’t that noticeable because we
are using our imperfect senses to
view the image.

Let’s take a simple example. Sup-
pose our data consists of a list of
the heights in metres of the people
who are reading this column, col-
lated for some statistical experi-
ment. We have several thousand
data points, for the sake of argu-
ment 10,000. How can we express
this information in a file? One way
is to create a text file containing the
values, one measurement in
metres per line:

1.83
1.77
1.78
...

If we assume that we’ll always have
4 characters per line, the entire file
will be 60,000 bytes long (remem-
ber each line is terminated by a car-
riage return and line feed character
pair). Think about what this text
file looks like. For a start, the

second character of every line is a
decimal point. This is totally
redundant. We could instead
impose the assumption that the
measurements are quoted in centi-
meters and, at a stroke, we have a
different encoding which is
smaller in size than the original.
We still have exactly the same
information, but we exploited
some redundancy in the original
method to encode it so that we can
store it in less space. Our file is
now 50,000 bytes in size.

The next improvement? Well, we
don’t need the superfluous
carriage return and line feed char-
acters: just assume each measure-
ment takes up three characters.
We haven’t altered the informa-
tion, but the file is now 30,000
bytes long.

I’m sure that some of you are
jumping up and down now saying
‘encode the values in binary as
bytes.’ And, assuming that I don’t
have any readers over 2.55 metres
tall, that’s the final encoding we’ll
consider for this simple example.
Same information, however the file
is now 10,000 bytes in size. With-
out doubt, we could all easily write
a simple program to compress the
original data to 17% of its original
size and decompress it into the
same text file without even
breaking into a sweat.

I’m sure you see the idea here.
To compress data we exploit some
redundancy in the original encod-
ing and remove it to produce the
compressed data.

Shake Your Head
Another example. Think about a
text file containing some English

April 1999 The Delphi Magazine 35

text. Like me, you’d realize pretty
quickly that it really only contains
the twenty six letters of the alpha-
bet, lower and upper case, plus the
space character, plus a handful of
punctuation characters, plus the
carriage return/line feed character
pair. At a guess, the text file con-
tains 64 different characters, tops.
Since 26 is 64, we have 6 bits per
character. Yet, on the PC at least,
it’s encoded in ASCII, which uses 8
bits per character. You can see
without any rigorous argument
that we’re ‘wasting’ 2 bits for every
character. If we chose a different
encoding scheme to ASCII we could
get one and a third characters per
byte, or four characters for every
three bytes, instead of ASCII’s
three. We could be achieving a
compression ratio of 75%.

A quick note on compression
ratios is in order here. The ratios I
shall be quoting are going to be
expressed as percentages and will
be calculated as compressed size /
original size * 100%. Thus with the
alternative character encoding
above, for every character the
compressed size is 6 bits, the origi-
nal size is 8 bit and thus the
compression ratio is 75%.

The compression method can be
expressed as: read the next charac-
ter from the input stream, encode
it as six bits and output the six bits
to the compressed stream (we’ll
see how to do this in a minute). The
decompression method is: read six

bits from the compressed data
stream (again we’ll see how to do
this in a minute), convert it back to
ASCII and output the resulting
character to the uncompressed
stream.

Of course, this simplistic encod-
ing has a big problem. It assumes
that the text file just contains the
64 characters we originally
selected. For example, if the text
file was written in French (le texte
est écrit en français), we’d suddenly
have characters with accents and
cedillas embedded in the text. How
do we deal with these? The usual
method is to introduce the notion
of an escape character. We select
one of the 64 compressed
encodings to represent a special
character, the escape. When we
come across a character in the
input stream that’s not one of the
63 we can now compress, we
output the 6 bit escape followed by
the 8 bit problematic character.
The presence of this escape char-
acter in the compressed stream
warns the person (or program)
interpreting the data that some-
thing special is going on: instead of
interpreting the next 6 bits as a
character, it is to read a full 8 bits
and simply assume that it is an
ASCII character. This compression
will make our compression ratio
worse (these uncompressible
characters would occupy 14 bits
instead of their original eight,
being the 6 bit escape character

followed by the original 8 bit ASCII
character, but one hopes they’ll be
rare enough not to affect the
overall compression too much).

In fact, this brings up an impor-
tant point. For some compression
methods there will be some bytes
or byte sequences that will ‘com-
press’ to a series of bits that is
larger than the original series of
bits for those bytes. If you think
about it, this is obvious, otherwise
we could go on compressing data
time after time after time. All the
way down to one byte!

It will be instructive to code this
compression algorithm in Delphi.
In doing so, we can investigate how
to read and write individual bits
from a stream. We won’t get totally
overwhelmed because the com-
pression algorithm is relatively
simple.

Walk The Dinosaur
Let’s call the compression method
SixBitPack. The compression algo-
rithm is shown in pseudocode in
Listing 1. The decompression algo-
rithm is shown in pseudocode in
Listing 2. If you read them, you’ll
see I’ve got a funny bit in the
pseudocode. To signal the end of
the compressed data we output a
particular bit sequence to the com-
pressed data stream (it’s a 6 bit
escape character, followed by an
end-of-data character). Why? Well,
consider compressing three letter
As. We can output these as three
lots of six bits, or 18 bits in all.
Since our output stream is sized in
bytes (a byte is the smallest physi-
cal representation of data in
memory or on disk), we’d end up
with three bytes.

On decompressing, we’d inter-
pret these three bytes as 24 bits, or
four lots of six bits. We’d decom-
press to four characters if we’re
not very careful. And that’s bad
news, compressing three charac-
ters and, on decompression, get-
ting four back! The simplest way
around this is to encode an
end-of-data marker at the end of
the compressed stream. Unless we
remove another six bit encoding
from our remaining 63 to serve this
purpose, we need to use the
escape character. But which ASCII

while there are more chars in the input stream
get next char from input stream
if char can be compressed then
convert char to 6 bit encoding
output this encoding to output stream

else
output 6 bit escape encoding to output stream
output char to output stream

output escape encoding to output stream
output end-of-data char to output stream

➤ Listing 1: SixBitPack compression.

set Finished to false
while not Finished do
get next 6 bits from input stream
if this is the escape char
read 8 bits from the input stream
if this is the end-of-data char then
set Finished to true

else
output char to output stream

else
convert this to an ASCII char
output char to output stream

➤ Listing 2: SixBitPack decompression.

36 The Delphi Magazine Issue 44

character should we use as an
end-of-data marker? Well, how
about a letter of the alphabet? If we
encounter a letter of the alphabet
in our original text stream we’ll
encode it as six bits. We won’t ever
encode it as an escape character
followed by the ASCII letter. So we
can use this peculiarity to signal
the end of the data, we’ll in fact use
Z as the end-of-data marker.

Righty-ho then. With compres-
sion we’re left with the problem of
writing 6 or 8 bits to the com-
pressed stream. With decompres-
sion we’re left with the problem of
reading 6 or 8 bits from the
compressed stream. How is this
done? Welcome to the world of
bit-twiddling.

Let’s consider writing a single
bit. What we do is to use bit shifting
operations and bit-masking meth-
ods to collect 8 bits into a byte and
then write the byte to the output
stream. Listing 3 shows a simple
WriteBit routine. The bit we want
to write is passed in as a Boolean
value of false or true (in bit terms,
0 or 1). We shift the value in the col-
lector byte left by one bit to make
room for the new value. We then OR
in the new bit. If we’ve now col-
lected 8 bits we’ve filled our collec-
tor byte and so we can write the
whole byte to the output stream
and reset our bit count.

In general, however, we’ll be
writing several bits in one go.
Rather than continually call this
WriteBit routine in a loop we can
optimize it a little by writing a
WriteNBits routine. Essentially, we
just write the code for WriteBit in a
loop. Reading a single bit and read-
ing several bits works in the same
way.

We can now write the SixBitPack
compression and decompression
routines. We’ll make them generic
routines that accept an input
stream and an output stream as
parameters, so we can compress
memory, files or whatever, just so
long as there is a stream represen-
tation. The disk has the details. I
compressed Love’s Labour’s Lost
with SitBitPack and achieved a
compression ratio of 76%. Pretty
close to the optimal 75% for this
particular compression method.

procedure WriteBit(aBitValue : boolean; aStream : TStream;
var aCollByte : byte; var aBitCount : integer);

begin
aCollByte := aCollByte shl 1; {make room for the new bit}
if aBitValue then
aCollByte := aCollByte or 1; {add the new bit}

inc(aBitCount) {increment the count of bits};
if (aBitCount = 8) then begin {if we've filled a byte write it out}
aStream.Write(aCollByte, sizeof(byte));
aBitCount := 0;

end;
end;

➤ Listing 3: Writing a single bit.
Carry Me Back
To Old Morocco
The whole compression field
started out with a seminal paper in
1952 by David Huffman (A Method
for the Construction of Minimum-
Redundancy Codes) in which he
outlined the Huffman encoding or
compression algorithm. Let’s look
at this file compression method.

In any file there will be a unique
distribution of individual charac-
ters, with some characters repre-
sented more than others. For
example in English text, the letter E
is the most common character,
followed by T, and so on. What
Huffman realized was that if he rep-
resented the most common char-
acters with a short bit string and
uncommon ones with a long bit
string, overall the encoding would
save space, and he invented a
method for creating the minimal
codes required to do so.

Let’s take an example. La
Habanera is a track by Yello on
their One Second CD. The words
have the following distribution of
letters (ignoring case sensitivity):

a 4
b 1
e 1
h 1
l 1
n 1
r 1
space 1

As if by magic, let me allocate the
following bit strings to each letter.

a 0
b 1000
e 1001
h 1010
l 1011
n 1100
r 1101
space 111

We can then encode La Habanera
as the following bit string,
comprising 31 bits in all:

10110111
10100100
00110010
0111010

This is a compression ratio of
about 36%.

Because of my magic (the Algo-
rithms Alfresco corollary to
Clarke’s Law is: ‘any sufficiently
advanced algorithm is indistin-
guishable from magic’), decoding
this bit string with the encoding
table doesn’t result in an ambigu-
ous answer. There is no bit encod-
ing for a character such that the
first part of it is the encoding for
another character. Try it and see.
Peel off bits, one by one, and try to
match them up against those in the
table. 1 doesn’t match, neither
does 10, nor 101, but 1011 corre-
sponds to ‘l’. The next bit, 0, on its
own is ‘a’. We then have to peel off
3 bits for 111, which is space. And
so on.

Cool. But how do we get the
table of the characters and their
codes? Before answering this let’s
view the table I miraculously pro-
duced earlier as a binary tree.
Starting at the root node, we trace
out the bits for each code as
follows: a 0 bit means move down a
link to the left and a 1 bit means a
move down a link to the right. We
can draw up the binary tree shown
in Figure 1. Notice that the
characters only appear at the
leaves of the tree, and the value at
each internal node is the sum of
the counts of characters of its chil-
dren. The count at the root is obvi-
ously the total number of
characters in the text itself.

38 The Delphi Magazine Issue 44

Because each character appears at
a leaf, the code for one character
cannot form the start of the code
for another character.

Using this tree makes the decod-
ing of our compressed bit string
even easier. We start at the root,
and then for each bit to peel off the
bit string we follow the required
link. When we hit a leaf, output the
character that’s found there and
then start over at the root.

Out Come The Freaks
So how do we generate this tree?
We first have to read through the
entire file and create a table of
characters and the number of
occurrences of each character.
That’s the easy part.

Now we have to build a binary
tree. The algorithm Huffman
invented goes like this. First con-
sider these character/count pairs
as a pool of nodes for a tree. Sec-
ondly, remove the two nodes with
the smallest counts from the pool.
Next, join them to a new parent
node, set the parent’s count to the
sum of its two children. If the pool
is now empty, we’re done and the
new parent we created is the root
of the final tree, otherwise, add the
parent to the pool and continue at
the second step.

Let’s try the algorithm out on La
Habanera. We have already calcu-
lated the character counts above.
Figure 2 has the character/count
pairs as preliminary nodes in a
‘pool’. Find the two nodes with the
smallest counts. We’ve got an
abundance of nodes with counts of
1 (the minimum) so just choose
any two, we’ll take the b node and
the e node. Join them to a new
parent node, and add it to the
‘pool’. We’ll get the first step in
Figure 3. Continue by finding the
two smallest nodes again, the h and
l nodes this time, join them and
add the new parent node to the
pool. Figure 3 shows the progress
of the algorithm until we get to the
final tree represented by Figure 1.
Notice on the way that Figure 1 is
not the only Huffman tree we could
achieve, every time we have to
make a choice between two or
more nodes with the same count
we could create another tree.

So just how do we code this? We
could code it from the algorithm
above: allocate a bunch of nodes,
put them in a TList and then allo-
cate new parent nodes etc, etc. I’m
sure you’d agree that there are an
awful number of individual node
allocations going on. Is there any-
thing we could do to reduce this?

Anything Can Happen
Consider a binary tree with n
leaves. How many internal nodes
must there be? Well, since a tree
with two leaves would require a
single internal node (the parent of
both), and joining a single leaf to
the root of an already formed tree
would itself require a single parent
(increasing the count of internal
nodes by one), we can easily show
by induction that n leaves would
require n-1 internal nodes.

Using this information we can
easily calculate that, for the 256 dif-
ferent byte values we could find in
a generic file, we’ll need a maxi-
mum of 511 nodes to create a fully
populated Huffman tree. No more,
maybe less; obviously, it depends
on the file itself. So at the outset we
can create an array of 511 nodes
and use them in the creation of the
Huffman tree. Since we have an
array of nodes, we don’t need to
use pointers for the parent-child
links, at least in the traditional
sense. Instead, we can use array
indexes to nodes.

Internal nodes would require the
following information: a count
value, the index of the left child and
the index of the right child. Leaf
nodes (those with the actual char-
acter) would require the character
as well, but not the left or right
child indexes. We could save space
by using some kind of variant
record to accommodate both
these types of nodes, but in the
long run it isn’t really necessary. In
fact, we can be even cleverer and
recognize that the leaf nodes will
appear in the first 256 elements of
the node array and that the index
of a node in those 256 elements is
the ordinal value of the character it
represents. We won’t need the
character field at all. I shall use the
node record structure shown in
Listing 4.

Great, so we’ve saved some time
by using this allocation strategy
and the design of the nodes.
Looking at the algorithm again, is

➤ Figure 1: Huffman tree for
La Habanera.

➤ Figure 2: Preliminary nodes
ready to build a Huffman tree.

➤ Figure 3: Stages in growing a
Huffman tree.

April 1999 The Delphi Magazine 39

there any other design strategy we
could choose right now to save
some speed in the final code? If you
are a regular reader of Algorithms
Alfresco, I would hope that you are
seriously considering the priority
queue from the November 1998
issue for the part of the algorithm
that requires us to remove the two
nodes with the smallest counts,
because that’s indeed what we
shall use.

The code that builds the
Huffman tree is shown in Listing 5.
For brevity I haven’t shown the pri-
ority queue code since it would
just obscure the workings of the
Huffman tree algorithm and the
code’s on the disk anyway.

What Up Dog?
Now we have built the Huffman
tree, we can start to apply it to
compressing the original data.
Again, let’s consider some speed
improvements before embarking
on a brute force implementation.
Consider what is about to happen:
we are going to read the input file
byte by byte and calculate the bit
string for each byte and output it.
What does the calculation for the
bit string involve? In a simple sense
we have to find the byte value in
one of the leaves of the tree and
then walk up the tree from that
point until we find the root. The
path we took is the reverse of the
bit string we want. So it seems we’d
need parent links as well so we can
move up the tree. Also this would
require some pretty intensive code
to be executed for every character
or byte we have to compress.
Surely there’s an easier way?

The best thing to do in the cir-
cumstances would be to calculate
the bit strings for every character
or byte before we start the com-
pression. Then all we need to do is
to pass the pre-calculated bit
strings to the output routine for
every byte in the input stream.
Also, since we are going to calcu-
late the bit strings for every byte
value, we can just follow every
path from the root in order, reach-
ing every leaf and store the bit
strings in some array, indexed on
byte value.

There is one problem with this:
how big are the bit strings? Or, to
put it another way, since we’d like
to pre-allocate a 256-element array
of bit strings, one for each byte
value, how big do we make the
elements? One algorithm we could
use is this: walk the tree twice, the
first time to find the longest bit
string in the tree, the second time
to generate the individual bit
strings. The first pass would
enable us to calculate the amount
of memory needed to store the bit
strings and to allocate an array to
hold them. Another algorithm,
which takes the diametrically
opposing viewpoint, is to
recognize that the deepest
Huffman tree we could form would
have 255 levels (essentially it
becomes a very long linked list);
hence the longest bit string will fit
in 32 bytes (there are 256 bits in 32
bytes). And 256 32-byte bit strings
is ‘only’ 4Kb of memory, so just
pre-allocate that and be done with
it.

For this article, we’ll take the
latter course. We’ll save some time
in doing so, and in 32-bit programs
we will generally have enough
heap memory to play around in.

Obviously if you are programming
in an environment that does have
memory limitations you’d go the
opposite route, or even just walk
the tree when compressing every
character. We also have to ensure
that we store the length of the bit
string for each character, a byte
would suffice, but in the interests
of efficiency on 32-bit CPUs we’ll
want to align on a 4-byte boundary
and hence we’ll use a longint.

I won’t show the code that gen-
erates the bit string array here.
Although non-trivial, it is pretty
simple to understand.

Look What’s Back
So, are we done? Not quite. Imag-
ine that we wrapped up the code
we’ve just presented somehow
into a compression program that
compresses a file into another.
How would we decompress the file
we produced? Obviously we’d go
roughly the same route as the com-
pression: generate the table of
characters and their counts, build
the Huffman tree, and then use it to
decompress the input bit stream.
Stop right there! Reread that sen-
tence and understand what it
implies: we have to ship the origi-
nal file with the compressed file,
since without it we can’t know the
character count table and without
that we can’t generate the Huffman

type
PHuffmanNode = ^THuffmanNode;
THuffmanNode = packed record
hnCount : longint;
hnLeftInx : longint;
hnRightInx : longint;

end;
PHuffmanTree = ^THuffmanTree;
THuffmanTree = array [0..510]
of THuffmanNode;

procedure BuildHuffmanTree(aHTree : PHuffmanTree;
var aLastParentInx : integer);

var
i : integer;
PQ : THuffmanPriorityQueue;
Node1Inx : longint;
Node2Inx : longint;
ParentInx : integer;

begin
{create a priority queue}
PQ := THuffmanPriorityQueue.Create(aHTree);
try
{add all the non-zero nodes to the queue}
for i := 0 to 255 do
if (aHTree^[i].hnCount <> 0) then
PQ.Add(i);

{while there is more than one item in the queue, remove
the two smallest, join them to a new parent, and add
the parent to the queue}

while (PQ.Count > 1) do begin
Node1Inx := PQ.Remove;
Node2Inx := PQ.Remove;
inc(aLastParentInx);
with aHTree^[aLastParentInx] do begin
hnLeftInx := Node1Inx;
hnRightInx := Node2Inx;
hnCount := aHTree^[Node1Inx].hnCount +

aHTree^[Node2Inx].hnCount;
end;
PQ.Add(aLastParentInx);

end;
finally
PQ.Free;

end;
end;

➤ Listing 5: Building the
Huffman tree.

➤ Listing 4: Type definitions for
the Huffman tree.

40 The Delphi Magazine Issue 44

tree to be used in the decompres-
sion. I’m sure you’ll agree that
would defeat the purpose of the
exercise!

Hence the compression phase of
the Huffman algorithm must supply
either the character count table or
the Huffman tree as part of the
compressed file. Which is best?
The Huffman tree we create in
memory is 511 elements of 12 bytes
apiece, or 6,132 bytes in size. A
little too large to tack onto a com-
pressed file, I’m sure you’ll agree.
The better solution is to add the
character count table. If we just
add the 256 longint counts, then
we’d add a guaranteed 1,024 bytes
to the compressed file. An alterna-
tive is to add only those counts
that are non-zero, and since we’d
have to associate each count with a
byte value, we’d be outputting 5
bytes for each non-zero count. We
could even be clever and switch
between the two: if there were 205
or more different byte values in the
original file we would output the
256 counts as a single table; if there
were less we’d use the byte value
plus count method instead. That
way we know we’d have the char-
acter count table as a ‘header’ to
the compressed file and that it was
1,024 bytes or less.

Some of you who are familiar
with the DFM file format in Delphi
are no doubt aware that the
streaming code outputs positive
integer values in three different
ways. If the value is between 0 and
255 inclusive, two bytes are output

to the stream, the first identifying
the next byte as a byte value
between 0 and 255. If the value is
between 256 and 65,535, then three
bytes are output, the first identify-
ing that the next two bytes are to
be interpreted as a word value.
Finally if the value is greater than
65,535, five bytes are output: an
identifier and a longint value. We
shall use the same technique for
the Huffman character count table:
it would certainly help reduce the
size of the table in relation to the
actual compressed data, espe-
cially for smaller files.

Decompressing? Well, we’ve
seen the essential algorithm above
when decompressing the
compressed words la habanera.

1. Set the current node to the
root node of the Huffman tree.

2. Read a bit from the input
stream. If the bit is 0 follow the left
hand link from the current node to
get the new current node; if 1, the
right hand link.

3. If the node reached is not a
leaf, continue at step 2.

4. If the node reached is a leaf,
output the character correspond-
ing to that leaf to the output
stream.

5. If we’ve output the required
number of characters, stop. Other-
wise continue at step 1.

So, at this point we are ready to
write the compressor and the
decompressor. The compressor,
as we’ve seen, must output the
character count table to the file in
some form before the actual com-
pressed data. It must output before
the table one extra item of informa-
tion: the number of elements in the

character count table. From the
latter the decompressor ‘knows’
how many character count items it
needs to read from the com-
pressed file and hence it can find
out where the actual compressed
data starts. How does it know
when to stop decompressing? In
other words, how many bytes
must it end up with after decom-
pression? The answer is hidden:
once the decompressor has built
the Huffman tree, the root node
has the total count of characters
in the original file. Listing 6 shows
the code for the decompression
algorithm.

Betrayal
There’s a subtle point about
Huffman compression that some
of you may have spotted. I admit
that it only hit me when I was actu-
ally coding the Huffman compres-
sion unit, none of my reference
books mentioned it. Way back
when, as I was describing building
the Huffman tree, I said that you
must remove the two smallest
nodes from the pool of nodes.
What happens if you are
compressing a stream that just
comprises repetitions of a single
character? Calculating the charac-
ter distribution gives you a single
node. You can’t build a tree out of a
single node, at least not one that
would make a lot of sense with
regard to the Huffman algorithm
(what Huffman code would you
give the one and only character?
The code is the path you take from
the root after all, and if there are no
paths...). The answer that I came
up with was a form of RLE

procedure DoHuffmanDecompression(aInStream : TStream;
aOutStream : TStream; aHTree : PHuffmanTree;
aRoot : integer);

const
Bit : array [0..7] of byte = {bit masks}
($01, $02, $04, $08, $10, $20, $40, $80);

var
CharCount : longint;
TotalCharCount : longint;
BitNum : integer;
CollectorByte : byte;
CurrNode : integer;
GoLeft : boolean;
Ch : char;

begin
{calculate the total number of characters to decompress;
preset the loop variables}
TotalCharCount := aHTree^[aRoot].hnCount;
CharCount := 0;
BitNum := 0;
CurrNode := aRoot;
{repeat until all the characters have been decompressed}
while CharCount < TotalCharCount do begin

{read the next bit}
if (BitNum = 0) then begin
aInStream.Read(CollectorByte, sizeof(CollectorByte));
BitNum := 7;

end else
dec(BitNum);

GoLeft := (CollectorByte and Bit[BitNum]) = 0;
{walk down the Huffman tree}
if GoLeft then
CurrNode := aHTree^[CurrNode].hnLeftInx

else
CurrNode := aHTree^[CurrNode].hnRightInx;

{if we have reached a leaf, output the character
concerned, and reset the current node to the root}
if (CurrNode < 256) then begin
Ch := char(CurrNode);
aOutStream.Write(Ch, sizeof(byte));
CurrNode := aRoot;
inc(CharCount);

end;
end;

end;

➤ Listing 6: Decompressing by
walking the Huffman tree.

April 1999 The Delphi Magazine 41

compression (run length encod-
ing: where runs of characters are
encoded as character and charac-
ter count pairs) output the charac-
ter distribution table only (that is,
just the one character and its
count). On decompression, if the
decompressor notices just a single
character in the distribution, it
recreates the stream of single
characters.

The disk accompanying this
issue contains a unit to perform
Huffman compression and decom-
pression. To make the routines
widely usable, I’ve coded them to
operate on streams; thus you can
compress data in memory or
BLOBs just as easily as complete
files. To make it even faster for cer-
tain streams, I’ve included on the
disk a unit containing a TStream
descendant that acts as a buffer for
any other stream. It’s a variation on
an early article of mine for The
Delphi Magazine (the January 1998
issue to be precise).

Using the Huffman compression
routine I compressed the text for
Love’s Labour’s Lost and achieved a

61% compression ratio. For com-
parison, WinZip achieved an
overall ratio of 40% for the same
file (measured as size of Zip file to
size of original; note that WinZip
quotes a ‘reduction’ ratio of 60%,
which is equal to 100% less the
compression ratio I’m quoting).

The Party Broke Up
There are a couple of points that
must be stressed about Huffman
encoding. Firstly, it is hampered by
having to pass enough information
with the compressed data to
enable the decompressor to
rebuild exactly the same tree the
data was compressed with (in our
case, the character count table).
This makes it unsuitable for small
files: the table will overwhelm the
compressed data in that case,
possibly resulting in a compressed
file that is larger than the
uncompressed file.

Secondly, the compressor must
read the input file twice: once to
generate the character count table
and the other time to compress the
data. For small files, that wouldn’t

be too bad, since the operating
system will tend to have the file in
its cache for the second pass, but
for larger files, it will cause
Huffman encoding to be slower
than compression algorithms that
only rely on a single pass through
the file.

There is a modified Huffman
compression algorithm called
adaptive Huffman compression
that avoids these two problems,
but we must leave that for another
time. Happy squeezing!

Julian Bucknall is highly compress-
ible at the moment and needs to
go on a diet and start exercising
again, ready for the Bolder Boul-
der 10Km road race. He was
ready, but was not before: was
not was. He can be reached at
julianb@turbopower.com. The
code accompanying this article is
freeware and can be used as-is in
your own applications.

© Julian M Bucknall, 1999

	Professor Night
	Shake Your Head
	Walk The Dinosaur
	Carry Me Back To Old Morocco
	Out Come The Freaks
	Anything Can Happen
	What Up Dog?
	Look What’s
	Betrayal
	The Party Broke Up

